Kaleidoscopes

Introduction .. 3
Getting Started .. 4
Components .. 6
Interface .. 6
 Collapsed View: Effect Processors and Mix Section .. 7
 Modulation Display .. 8
 Expanded View: Trigger .. 9
Controls ... 10
 Effect 1 and Effect 2 ... 10
 Modulators .. 16
 Swap Effect Presets .. 16
 Expand View Button ... 16
 Trigger Section .. 17
 Mixer Section ... 19
Introduction

Nearly every instrument in a mix can use more depth, air, and movement—in short, a deep stage on which to play. Sometimes, particularly in electronic music, you want to push further, employing phasing effects that move with attitude. Engineers can raise depth with reverb and delay, but this can become overwhelming. A little-known trick is to add a range of modulations to the signal, managing their triggers. Together, controlled modulations can add depth, life, and motion to a mix.

Waves Kaleidoscopes makes applying and managing such effects simple, efficient, and creative.

The Kaleidoscopes plugin combines two modulation effects engines and two independent triggers in one package. Its dual **Effects** processors, which create phase and amplitude modulations, can be cascaded so that one effect dances with the other—or can be run in parallel, for independent processing. The **Trigger** section decides when an effect begins and ends. You can define a trigger in several ways and even make one trigger master over the other. Triggers can be as simple or complex as you demand.

Kaleidoscopes is more than triggers and modulators. Its sections can create seamless effects, from subtle depth enhancement to in-your-face phase changes. Everything is a meeting of effects, triggers, and your imagination. In Kaleidoscopes, you can discover a new playing partner who does not just follow along, but actually plays with you...
Getting Started

You can learn to use Kaleidoscopes by experimenting with its controls and listening to where that takes you. However, to speed your learning, we made the following tutorial that focuses on plugin issues and controls.

Begin with factory default settings. Open an instance of Kaleidoscopes or choose Default from the Load menu on an already opened plugin. For the clearest results, we suggest that you work with sustained sounds, such as on a piano, Rhodes piano, sustained guitar, or vocal.

The next section will list and describe the plugin controls.

ONE-EFFECT FLANGER

1. Choose a phaser for Effect 1 and a flanger for Effect 2. For now, turn the On/Off switch off for Effect 1.
2. Raise Effect 2’s Feedback control to 65, so the flanger is deeper and more prominent.
3. Go to the Character control and toggle between the settings, noting how the tonality changes with each setting.
4. Slowly raise the Manual Depth to 33, and listen to how the comb effect of the flanger occurs at ever-lower frequencies.
5. Bring Depth to 13 to hear the sweep in the upper frequencies. Slowly increase the Depth to 50, listening to how the sweep tone changes.
6. Increase the Speed for a fast effect or lower it to 0.20 for a slow, sweeping flanger.
7. Choose chorus. The settings you just used for a flanger effect will now produce a rich chorus. Return to the flanger to compare.
8. In the Mixer section, add some harmonic distortion using the Drive control.
ADD A SECOND EFFECT AND USE PARALLEL PROCESSING

The next step is to activate Effect 1 and process the effects in parallel. That way, rather than linking one processor output to the input of the other, both effects units are sent straight to the output. Effect 1, the phaser, is sent to the left, while Effect 2, the flanger, is sent to the right. Continue working where the previous section ended.

1. Turn on Effect 1.
2. Note that the modulator type is set to Input by default, meaning that the audio entering the plugin is the modulator itself.
3. Raise the Mix to 50, to better hear the phaser effect.
4. Raise the depth to increase the range of the phaser sweep. The phaser effect should now be evident.
5. Set the Minimum Frequency of the phaser range to 1000 Hz, so the sweep ranges from 1000 Hz to the maximum frequency setting.
6. Choose parallel (Prl) on the Serial/Parallel toggle, noting that the mix controls for each effect have become level controls. This indicates that the effects are not chained, but each routes directly to the output mixer.
7. In the mixer section, slide the Dry control fully to the left, so that you hear only the output of the two effects.
8. In the mixer section, rotate Effect 1 fully to the left using Rotate 1, then rotate Effect 2 fully to the right with Rotate 2.
9. Use the Level control for each effect to create the balance you like, with phasing on the left and chorusing on the right.
10. Reintroduce the dry signal to the sound at a setting of -6 dB.
Components

<table>
<thead>
<tr>
<th>Component</th>
<th>DAW Track</th>
<th>Routing</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaleidoscopes mono</td>
<td>Mono</td>
<td>Mono input, mono output</td>
<td></td>
</tr>
<tr>
<td>Kaleidoscopes mono-to-stereo</td>
<td>Mono</td>
<td>Mono input, stereo output</td>
<td>All plugin inserts later in the rack will be stereo. The rack becomes stereo.</td>
</tr>
<tr>
<td>Kaleidoscopes stereo</td>
<td>Stereo</td>
<td>Stereo input, stereo output</td>
<td></td>
</tr>
</tbody>
</table>

Interface

The interface offers two views, **Expanded** and **Collapsed**. The collapsed view shows the two identical effect processors and the mix section. Click the Expand/Collapse button in the upper right corner to reveal or hide the two Trigger sections.

[Collapsed View](image1) [Expanded View](image2)
Collapsed View: Effect Processors and Mix Section

1. Input Meter
2. Output Meter
3. Modulation Display, Effect 1
4. Modulation Display, Effect 2
5. Effect On/Off
6. Effect Type Selector Tabs
7. Modulation Shape and Character
8. Modulator Controls
9. Output HP/LF Filters
10. All-pass cutoffs
11. Modulation Depth Control
12. Manual Depth Control
13. Plugin Input Gain
14. Plugin Output Gain
15. SC Listen
16. Tempo
17. Drive Control and Source Select
18. Modulator Shape Menu
19. Serial/Parallel Signal Path Select
Modulation Display

The Modulation Display at the top of the plugin illustrates the speed and range of the modulator for each effect.

- The Modulator Type (Phaser, Flanger, Chorus, or Tremolo) dictates the basic shape of the motion.
- The speed of the dots is always based on the Speed/Sensitivity setting.
- The effect chosen defines the range of movement shown in the display.

Phaser (L/R motion indicate changes in frequency): The left-most ball indicates the motion’s starting point, as defined by the all-pass filter Min, Max, and Q. Depth sets the actual amount of movement.

Flanger and Chorus (L/R motion illustrate changes in time): Depth and Manual Depth work interactively to set the range of movement. Each impacts the signal in a markedly different way.

Tremolo (up and down motion indicates gain changes): The Depth knob is the only control for setting the range of motion.

On the edges of the display are two full scale meters. The meter on the left shows plugin input level, the meter on the right shows plugin output level. Click on a meter to reset the red clip indicator.
Expanded View: Trigger

This section controls the triggering mechanism that starts, stops, and changes the signal's movement in relation to the incoming (or sidechain) signal’s behavior. Threshold, energy, and frequency are used to trigger an effect. Attack and sustain for the trigger are also set here.

1. Energy/Rhythm Trigger Mode
2. Trigger Listen (solo)
3. Trigger Type
4. Master Trigger (priority)
5. Use Sidechain for Trigger
6. Threshold for Trigger
7. HP/LP filters for Trigger Input
8. Trigger Attack
9. Trigger Sustain

Additional Mix Section Controls
10. Stereo Image Rotation
11. Wet/Dry Mix
Controls

Effect 1 and Effect 2

The two effect sections create complex phase effects through modulation. Effects 1 and 2 are identical and independent, their settings swappable to effectively change places in the signal flow.

Effect Type

Each processor has four Effect types.

Phaser

A phaser takes an input signal, splits it, and applies an all-pass filter to the second signal. Changing the filter cutoff alters the phase at specific frequencies. When the two signals mix, these phase differences create a whistling, phase-like sound. Adjust the phasing by changing the \textit{Min}, \textit{Max}, and \textit{Q} settings of the all-pass filter.

Flanger

A flanger takes an input signal, splits it, delays the second signal by a tiny amount, and mixes the delayed signal back into the original. This causes certain frequencies to be in or out of phase. The delay is modulated so that the in-phase or out-of-phase frequencies change constantly, creating the characteristic sweeping sound.

Chorus

A chorus effect mixes an audio signal with one or more delayed copies of itself. The delay is modulated by an LFO, achieving a slow-changing phase difference between the copy and original. A chorus effect can add a slow, silky splash to a signal, usually more subtly than a flanger.

Tremolo

Tremolo is modulation based on amplitude changes. It can add a feeling of motion and enliven a static sound.
Controls Available According to Effect Type

Each effect type has its own control panel. Most controls are common to all effect types.

PHASER

![PHASER Control Panel]

MODULATOR

- **Modulation Shape** is a drop-down menu offering a choice of modulation shapes.
- **Modulation Rate**
 - **Speed**: When a Sine, Triangle, or Absolute modulator shape is chosen, speed sets the pace of the modulator’s oscillation. With Sync on, the speed appears as musical notation. With sync off, the speed appears in Hz.
 - **Sensitivity**: When random, input, or sidechain modulator shape is selected, sensitivity controls how much the input signal affects modulation. A very high setting can yield significant modulator changes with each alteration to the envelope or the input or sidechain signals.
- **Depth** controls the range of oscillation. If, for example, Speed is set to 1.0 Hz and intensity is set to 60%, then the modulator will move only 60% or its potential range, while its speed remains 1.0 Hz.

- **Resonance** sets the phase of the effect. Negative values use all-pass filters to create negative phaser sounds. Positive values use notch filters that boost gain to create positive notch sweeps, a bit like a *wahwah*.

- **Width** controls the stereo image width. This function is only available in the mono-to-stereo and stereo components.

- **Character** offers a choice of all-pass filter presets that alter the personality of the effect.

- **Sync** allows the processor to follow the session tempo and time signature and to quantize the speed control to the tempo measurement values. With sync on, the modulation of simple shapes—such as sine, triangle, and absolute sine—will reoccur at exactly the same time. With sync off, the modulation cycle is not reproducible. Sync is not available for the random, input, and sidechain shapes.

ALL-PASS FILTER

- **Q**, **Range Min**, and **Range Max** set the parameters of the all-pass filter, which determines the frequencies sent to the effect processor. Frequencies outside this range are unaffected.

 - **Range Min** sets the minimum frequency of the phaser sweep.

 - **Range Max** sets the maximum frequency of the phaser sweep.

 - **Q** sets the Q value of the all-pass filter, as defined by the range min and range max settings.

EFFECT PROCESSOR OUTPUT

- **Mix/Level** controls the output level and wet/dry mix of the processor. It is not available when thru is selected.

 - When the mixer is set to serial, the mix knob controls the mix of the processor output with the dry signal. This mix is the input of the second processor.

 - When the mixer is set to parallel, the control becomes the level knob, setting the processor output level sent to the mixer.

- **The Low-pass filter** removes unwanted high frequencies from the output of the effects section.
• The **High-pass filter** removes unwanted low frequencies from the output of the effects section.

• **Thru** is available only in the stereo and mono-to-stereo components. With thru selected, the output of the effect processor, a one hundred percent wet signal, goes to the left output channel, while the dry path goes to the right output channel. This resembles the thru mode on a guitar pedal. In the stereo component, the thru effect sums the left and right signals to mono, sending a wet path to the left output and a direct path to the right channel. Thru is available only in serial mode.

FLANGER AND CHORUS

![flanger and chorus effects processors](image)

The controls for the flanger and chorus effects processors are identical.

MODULATOR

• **Modulation** is a drop-down menu with a choice of modulation shapes.

• **Modulation Rate**

 ○ **Speed**: When sine, triangle, or absolute modulator is selected, the speed control sets the speed of the modulator oscillation. With sync on, the speed appears as musical notation. With sync off, the speed appears in Hz.
o **Sensitivity:** When random, input, or sidechain modulator shape is selected, sensitivity controls how much the input signal affects modulation. A very high setting can yield significant modulator changes with each alteration to the envelope or the input or sidechain signals.

- **Feedback** controls the amount of signal returned to the modulator. This not available in serial mode when thru is selected.

- **Width** controls the width of the stereo image. This is available only in the mono-to-stereo and stereo components, and not in serial mode when thru is selected.

- **Character**, which includes a choice of all-pass filter presets, alters the personality of the effects processor.

- **Depth** controls the range of oscillation. If, for example, Speed is set to 1.0 Hz and intensity is set to 60%, then the modulator will move only 60% or its potential range, while its speed remains 1.0 Hz.

- **Manual Depth** sets the amount of pure delay added to the copied signal, changing the tonality at the point where the sweep is active. The flanger’s comb effect occurs at lower frequencies as the manual depth increases. The depth and manual depth affect each other strongly.

Effect Processor Output

- **Mix/Level** controls the output level and wet/dry mix of the processor. Not available when Thru is on.

 o With the mixer set to serial, the mix knob controls the mix of the processor output with the dry signal. This mix is the input of the second processor.

 o With the mixer set to parallel, the control becomes the level knob, setting the processor output level sent to the mixer. The Lowpass Filter is used to remove unwanted high frequencies from the output of the effects section.

- The **Low-pass filter** removes unwanted high frequencies from the effects section output.

- The **High-pass filter** removes unwanted low frequencies from the effects section output.
TREMOLO

MODULATOR

- **Modulation Shape** is a drop-down menu used to select between modulation shapes.
- **Modulation Rate**
 - **Speed**: Choosing a sine, triangle, or absolute modulator sets the speed of the modulator oscillation. With sync on, the speed appears as musical notation. When off, the speed appears in Hz.
 - **Sensitivity**: When random, input, or sidechain modulator shape is selected, sensitivity controls how much the input signal affects modulation. A very high setting can yield significant modulator changes with each alteration to the envelope or the input or sidechain signals.
- **Depth** controls the range of oscillation. If, for example, Speed is set to 1.0 Hz and intensity is set to 60%, then the modulator will move only 60% of its potential range, while its speed remains 1.0 Hz.
- **Character** is a choice of all-pass filter presets that alter the personality of the effects processor.
- **Low-pass filter** removes unwanted high frequencies from the section output.
- **High-pass filter** removes unwanted low frequencies from the section output.
Modulators

MODULATOR SHAPES

The moderator drop-down menu sets the modulator shape.

- Sine
- Triangle
- Abs
- Random
- Input
- Sidechain

Swap Effect Presets

Use the double-arrow swap settings in effects 1 and 2 to effectively change the order of the signal flow. This toggle is not available when the serial/parallel processing control is set to parallel.

Expand View Button

Click on the Expand/Collapse button in the upper-right corner of the display to open the Trigger section at the bottom of the plugin.
Trigger Section

The Trigger section sets how the input signal will activate the effects processors. The trigger section can also determine how the output of one processor triggers the other.

TRIGGER MODE

Energy acts like a straightforward gate: any sample that passes above the threshold will trigger the effect.

Rhythm uses detected transients to trigger the signal. The level of the signal has no effect on triggering: only the transients set the condition for the trigger.

TRIGGER TYPE

Use the drop-down menu to set trigger behavior.

- **Off**: Effects processing is not initiated through the trigger.
- **Simple**: The plugin waits for the signal to exceed the threshold. Once the signal passes the threshold, movement begins until the user stops it.
- **Re-Trigger**: Movement begins when the input signal passes the threshold. When the signal falls below the threshold, movement ends. The result is a rhythm that correlates with the cycle.
- **One Shot**: The plugin waits for the signal to pass the set threshold, at which point it completes the defined path, then stops. One shot is unavailable with Random, Input, and SC modulators.

Note: If the signal is still above the threshold when the settings cause movement to stop, movement will continue for additional round, stopping only when the signal is below the threshold at the end of the path.
Master assigns priority to a trigger when both triggers are activated.

Example: Trigger 1 is set to re-trigger, and Trigger 2 to one shot. Trigger 2 is set to master. If both triggers pass their set conditions, Trigger 2 will override Trigger 1 until it finishes its cycle. Trigger 1 will then begin its motion and continue until Trigger 2 is reactivated. The activity of the kaleidoscopes reflects this handing off from one trigger to the other.

Listen solos the detected signal for the trigger section. This enables you to listen to the detection in order to adjust the settings for the trigger.

SC uses the sidechain signal as the source for triggering.

TRIGGER CONTROLS

Threshold: When the trigger mode is set to energy, the threshold sets the input level above which the trigger will activate and effects processing begins. The kaleidoscope image shows when the trigger has activated the effect processor.

Sensitivity: When the trigger mode is set to rhythm, sensitivity controls how much the input signal affects modulation. A very high setting can mean significant modulator changes with each alteration to the envelope or the input or sidechain signals.

HP removes low-frequency information from the input signal or sidechain signal feeding the trigger mechanism. This can help you focus on specific frequencies sent to the trigger, to better control how the trigger operates. It is useful when judging how a specific instrument will activate the trigger.

LP removes low-frequency information from the input signal or sidechain signal feeding the trigger mechanism. Use LP to focus the low frequencies that activate the trigger.

Attack defines the speed at which the trigger opens once the threshold is exceeded. In rhythm mode, attack will define the character of the transient. A lower setting detects faster transients, while longer settings allow longer events to be detected as transients.
Sustain sets the length of time the trigger will remain open from when it first opened. With sync off, the sustain duration appears as time in milliseconds. With sync on, the sustain appears as tempo measurements.

Mixer Section

The Mixer section controls drive, input and output levels, and effects rotation.

Input controls the plugin input level.

Output controls the plugin output level.

Rotation 1 rotates the Effect 1 signal left or right in parallel mode, in the mono-to-stereo and stereo or components.

Rotation 2 rotates the Effect 2 signal left or right in parallel mode, in the mono-to-stereo and stereo or components.

When **BPM** is on, Kaleidoscopes will sync to tempo selected in the value box. When BPM is off, Kaleidoscope will not sync to the selected tempo, but rather it will grab the session tempo or use a default of 120 BPM.

SC lets you listen only to the sidechain signal only.

Drive increases the input to the dynamic processor, reducing the output correspondingly. The drive control can achieve more processing without changing the signal loudness. Choose the drive source via a three-position switch below the drive control.

- **Off** — No drive processing
- **Input** — Drive is applied to the input signal.
- **Output** — Drive is applied to the output signal.